
CoTCP – A New Approach to The Concurrent TCP 
 

Doan Phi Hung 
Switching Technology 

Research Center 
Viettel High Technology 
Industries Corporation 

Hanoi, Vietnam 
hungdp6@viettel.com.vn 

Nguyen Tai Hung 
Faculty of Communication 

Engineering 
Hanoi University of Science 

and Technology 
Hanoi, Vietnam 

hung.nguyentai@hust.edu.vn 

Dinh Viet Quan 
Switching Technology 

Research Center 
Viettel High Technology 
Industries Corporation 

Hanoi, Vietnam 
quandv@viettel.com.vn 

Do Ngoc Thanh 
Switching Technology 

Research Center 
Viettel High Technology 
Industries Corporation 

Hanoi, Vietnam 
thanhdn1@viettel.com.vn 

Ba Dinh Hoai 
Switching Technology 

Research Center 
Viettel High Technology 
Industries Corporation 

Hanoi, Vietnam 
hoaibd1@viettel.com.vn 

  

Abstract—The Transmission Control Protocol (TCP) were 
intentionally designed for the sake of service reliability but with 
the cost of application performance on which TCP clients need to 
use multiple connections to achieve concurrency and to reduce 
latency. To address this weakness of TCP, and on this paper, we 
proposed a new application-level protocol that makes use of TCP 
as transportation, named as CoTCP (Concurrent request - 
response over TCP). The new proposed protocol allows sending 
and receiving multiple messages concurrently on one connection. 
We also evaluated and tested the performance of CoTCP in 
various application scenarios on the specific hardware platform. 
Numerical results show that CoTCP can lead to higher 
concurrency and lower latency. 

Keywords—TCP, CoTCP, Connection, Concurrency, Latency 

I. PROBLEM STATEMENT 

TCP is one of the most commonly used protocol that is 
designed to send packets across the Internet and ensures the 
integrity of data sent over the network [1], [2]. In order to 
transmit data, TCP establishes a connection between a source 
and its destination. TCP can only transfer one message at a time 
per connection. A normal TCP transaction operated like this, the 
client establishes a connection to the server; the client sends a 
request to the server and wait for the response; the server 
responses to the client; the connection is closed or is reserved to 
be used for next transactions. A transaction needs to wait for 
other transaction to be completed before it can be started. A 
common strategy is to open multiple connections to serve 
multiple transactions at a time, which can help to improve 
concurrency and to reduce latency, but to open too many 
connections can be costly. 

TCP uses a three-way hand shaking to establish a connection 
between the client and the server [3]. A three-way hand shaking 
process is expensive because it requires three packets (SYNC, 
SYNC-ACK and ACK) to be transferred. To avoid having to 
open the connection many times, a TCP connection can be made 
persistent to be reused. However, additional resources are 
required to maintain each persistent TCP connection. Multiple 
TCP clients where each one opens several connections to the 
server can cause the server to be overloaded. 

To address that weakness of TCP for our own application in 
4/5G mobile core networks, our R&D team has come up with a 
proposition of a new application protocol names as CoTCP. That 
said, CoTCP is designed to solve the concurrency problem of 

TCP. On our design, a CoTCP transaction is operated in 
asynchronous mode so that multiple ones can be executed 
concurrently over the same TCP connection thus make CoTCP 
able to meet the requirement of high number of transactions per 
second (TPS) and low latency system while ensuring low 
number of (TCP) connections. 

The rest of the paper is organized as follows. The 
investigation result of similar works will be given on section II. 
Section III will present the details of our new proposed protocol, 
named as CoTCP. Experimental setup and performance 
evaluation will be presented in section IV. Finally, section V 
concludes our paper. 

II. RELATED WORKS 

In this section, we will discuss about current researches on 
the problem of high-performance TCP client-server system, and 
how to scale up TCP for handling of a large number of 
concurrent clients. This problem is always the remaining hot 
(research) topic for decades. 

The C10K problem [4] was coined in 1999 by software 
engineer Dan Kegel. It is the problem of optimizing network 
sockets to handle 10,000 connections at the same time. C10K 
problem is currently solved by certain web servers such as 
Nginx [5] which applies event-driven architecture to disorder 
the execution flow of network programs, and maximizes the 
utilization of CPU. By the early of 2020s, the problem is scaled 
up to C10M which means to concurrently handle 10,000,000 
connections. Several solutions have been proposed to solve the 
C10M problem also, such as in [6], [7], [8]. Those solutions 
mainly focus on optimizing or bypassing the kernel and 
therefore utilize multi-core processors and reduce system calls 
and context switching overheads. Recently, there are high-speed 
packet I/O frameworks such as DPDK [9], netmap [10], and PF 
RING [11] that allow user-space applications to exchange 
packets with the kernel networking stack, providing 
unprecedented network performance for applications. 

All of the above-mentioned solutions solve the concurrency 
problem of TCP by trying to increase the number of concurrent 
connections but none has been focused on utilizing a single 
connection to handle multiple (application) transactions 
concurrently. With the introduction of coroutine in modern 
programming languages such as golang [12], python [13], and 
kotlin [14]; handling millions of transactions at the same time 

This work is supported by Switching Technology Research Center. 



becomes significantly less expensive. Coroutine is a light-
weight thread managed by user-space which allows execution to 
be suspended or resumed without context switching overheads 
[15]. Using coroutines, applications can easily handle millions 
of concurrent transactions but to open and to manage millions of 
concurrent connections is still a challenge to this day. 

III. PROPOSED SOLUTION 

A. Protocol Design 

As said above, on this work, we’ve proposed a new 
application-level protocol to solve the concurrency problem of 
TCP. The new protocol was named as CoTCP (Concurrent 
request - response over TCP) and this section will give a detailed 
presentation of its design and operation. 

The core part of new proposed protocol are its transactions. 
CoTCP transactions are designed asynchronously in which a 
request could be sent before the response of another request is 
received as depicted on figure 2. 

 

 

Fig. 1. Requests and responses are 
sent sequentially. 

 

Fig. 2. Requests and responses are 
sent concurrently. 

In this asynchronous transaction mode, responses could be 
received out of the order in which requests were sent. And to 
make this possible, we assigned each request with a unique 
identifier (ID) and then the corresponding response must have 
the same ID so that it can be matched to its own request. As such, 
the proposed structure of a CoTCP message is depicted as on the 
figure 3. 

 

Fig. 3. Message's structure. 

The message is composed of three parts: 

 ID: A 4 bytes, unique integer that identifies a pair of 
request and response. 

 Body’s Length: A 2 bytes integer that indicates the size 
of message’s body. 

 Body: The actual content of the message that is stored 
in binary format. 

The working procedure of CoTCP on client side is illustrated 
as on figure 4 below. 

 

Fig. 4. Application architecture of CoTCP Client 

The procedure is a sequence of steps as follows: 

 Step 1: Establishes a new connection to the server. 

 Step 2: Create an event loop to listen on the established 
connection. 

 Step 3: Generate a unique ID for each request message. 

 Step 4: Send request message and open a channel to wait 
for the response. 

 Step 5: When the event loop receives data, split the data 
stream into messages and send them to the 
corresponding channels. 

 Step 6: Read the response message from the channel and 
close the channel. 

From the server side, the CoTCP working procedure is as 
depicted on the figure 5. 

 

Fig. 5. Application architecture of CoTCP server. 

It also goes through steps as follows: 

 Step 1: Accept a new connection from the client. 

 Step 2: Create an event loop to listen on the established 
connection. 



 Step 3: When the event loop receives data, split the data 
stream into messages and handle them concurrently. 

 Step 4: Assign the request’s ID to the corresponding 
response and send response to the client. 

B. Implementation 

In this sub-section, we will explain how to implement 
CoTCP client and server applications that can provide high 
concurrency and low latency with small overheads. 

We choose golang as the programming language to 
implement CoTCP because its built-in co-routines are suitable 
for building high concurrency applications. 

The core of the CoTCP application is its event loop. Each 
TCP connection is managed by one event loop running on an 
independent coroutine. The responsibility of the event loop is to 
listen on the connection for incoming messages and to handle 
them concurrently. Because TCP transmits data in stream and 
there is no boundary between TCP packets, it has the problem 
of packets sticking together. In order to solve this problem, each 
CoTCP message has a length field that can be used to split the 
data stream into messages. For CoTCP server, the event loop 
will scan on the input data stream for request messages and will 
spawn a coroutine to handle each one; the response message is 
then sent back to the client through the same connection of its 
request. For CoTCP client, the event loop will scan on the input 
data stream for response messages and will send them to the 
corresponding waiting channels. 

In order to match the response message to its request, each 
request is assigned to a channel that waits for response from the 
event loop; this mechanism makes a transaction look like a 
synchronous process. The list of waiting channels is stored in a 
hash table that can be used to lookup the channel by the ID of 
the response message. 

IV. PERFORMANCE EVALUATION 

To evaluate the performance of the new protocol, we have 
setup the test-bed (figure 6) and conducted three performance 
benchmarks with different application configurations where 
each one was taken for both TCP and CoTCP.  

 

Fig. 6. Performance benchmark's setup. 

The benchmarks were performed as following procedure. 

 Step 1: Initiate the server with predefined 
configurations. 

 Step 2: The server waits for incoming requests and 
responses after a delay. 

 Step 3: Initiate the client with predefined 
configurations. 

 Step 4: The client establishes a fixed number of 
connections to the server. 

 Step 5: The client initiates a pool of worker coroutines 
to send request to the server and wait for the response. 

 Step 6: The average number of transactions per second 
(TPS) and average latency is calculated where a 
transaction is started from the time of sending request 
until receiving response. 

 Step 7: For TCP benchmark, transactions on the same 
connection are executed sequentially. 

 Step 8: For CoTCP benchmark, transactions on the 
same connection are executed concurrently. 

Each benchmark includes one server to handle requests and 
one benchmark tool acting as the client: 

 The server is configurable with the following 
parameters: number of CPUs used, delay duration 
before sending responses back to the client, and size of 
the response’s body. 

 The client is configurable with the following 
parameters: number of CPUs used, number of opened 
connections to the server, number of worker coroutines 
used to send requests to the server, and size of the 
request’s body. 

A. First Benchmark 

1) Configurations 

TABLE I. SERVER’S CONFIGURATIONS 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz 

Number of CPUs 8 

Reponse delay 0ms 

Size of response’s 
body 

10 bytes 

TABLE II. CLIENT'S CONFIGURATIONS 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz 

Number of CPUs 8 

Number of worker 
coroutines 

500 

Size of request’s 
body 

10 bytes 

2) Results 



 
Fig. 7. TPS vs Number of Connections 

 
Fig. 8. Latency vs Number of Connections 

According to figure 7 and figure 8, we can conclude that: 

 For small number of connections (10 connections and 
below), the performance of CoTCP is about two times 
better than the performance of TCP. 

 For big number of connections (100 connections and 
above), the performance of CoTCP is similar to the 
performance of TCP. 

 The optimal number of connections for TCP is 500 
which is equal to the number of worker coroutines. 
Increasing the number of connections beyond 500 will 
not improve the concurrency but produce idle 
connections. 

 The optimal number of connections for CoTCP is about 
10 connections. As the number of connections grows, 
the performance of CoTCP slightly decreases due to the 
overheads for maintaining extra connections. 

B. Second Benchmark 

1) Configurations 

TABLE III. SERVER'S CONFIGURATIONS 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz 

Parameter Value 

Number of CPUs 8 

Reponse delay 10ms 

Size of response’s 
body 

10 bytes 

TABLE IV. CLIENT'S CONFIGURATIONS 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz 

Number of CPUs 8 

Number of worker 
coroutines 

500 

Size of request’s 
body 

10 bytes 

2) Results 

 
Fig. 9. TPS vs Number of Connections 

 
Fig. 10. Latency vs Number of Connections 

According to figure 9 and figure 10, we can conclude that: 

 The performance of TCP linearly increases as the 
number of connections increases from 1 to 500. 

 The performance of CoTCP is the same for any number 
of connections. 

1 10 100 500

TCP 35763 233881 418542 449329

CoTCP 76621 460298 449152 429857

0
100000
200000
300000
400000
500000

T
P

S

Number of Connections

TPS vs Number of Connections

TCP CoTCP

1 10 100 500

TCP 13.97668 2.137291 1.194261 1.112286

CoTCP 6.524401 1.085896 1.112787 1.162568

0

5

10

15

L
at

en
cy

 (
m

s)

Number of Connections

Latency vs Number of Connections

TCP CoTCP

1 10 100 500

TCP 96 948 9273 46657

CoTCP 46918 46425 46413 46409

0
10000
20000
30000
40000
50000

T
P

S

Number of Connections

TPS vs Number of Connections

TCP CoTCP

1 10 100 500

TCP 5134.051051 522.673832 53.858919 10.715458

CoTCP 10.654108 10.76679 10.770552 10.770902

0
1000
2000
3000
4000
5000
6000

L
at

en
cy

 (
m

s)

Number of Connections

Latency vs Number of Connections

TCP CoTCP



 At 500 connections, the performance of TCP is similar 
to the performance of CoTCP and is close to ideal which 
are 50,000 TPS and 10ms latency. 

C. Third Benchmark 

1) Configurations 

TABLE V. SERVER’S CONFIGURATIONS 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz 

Number of CPUs 8 

Reponse delay 100ms 

Size of response’s 
body 

10 bytes 

TABLE VI. CLIENT'S CONFIGURATIONS 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz 

Number of CPUs 8 

Number of worker 
coroutines 

500 

Size of request’s 
body 

10 bytes 

2) Results 

 
Fig. 11. TPS vs Number of Connections 

 
Fig. 12. Latency vs Number of Connections 

According to figure 11 and figure 12, we can conclude that: 

 The performance of TCP linearly increases as the 
number of connections increases from 1 to 500. 

 The performance of CoTCP is the same for any number 
of connections. 

 At 500 connections, the performance of TCP is similar 
to the performance of CoTCP and is close to ideal which 
are 5000 TPS and 100ms latency. 

V. CONCLUSION AND FUTURE WORK 

A. Conclusion 

On this paper, we have presented our work on proposing a 
new a protocol based on TCP named as CoTCP, which allows 
sending and receiving multiple messages concurrently over a 
single TCP connection. Numerical results show several 
advancements from our work as below: 

 CoTCP allows to send requests and receive responses 
asynchronously over the same connection; therefore, it 
helps to improve concurrency and reduce latency 
without having to open many connections. 

 In case the server can handle requests and response to 
the client immediately, which rarely happens in real 
conditions; the performance of CoTCP is not better than 
sending requests and receiving responses sequentially 
using TCP. 

 In case the server needs a certain amount of time to 
handle requests and response to the client, the 
performance of CoTCP is much better than the 
performance of TCP for small number of connections. 
These become comparable as the number of 
connections grows. 

 The performance of CoTCP is less dependent on 
number of connections than the performance of TCP is. 

B. Future Work 

The benchmark results show improvements in concurrency 
of CoTCP compared to TCP. However, there is still limitation 
of CoTCP. It does not support multiplexing [16], [17] on a single 
connection. While a large message is being sent, other messages 
are blocked from being sent on the same connection. In the 
future, we will add multiplexing to CoTCP. 

In order to achieve multiplexing on a single connection, a 
CoTCP message can be divided in multiple parts before being 
sent. Parts of multiple messages will be mixed together and will 
be sent over the same connection. The server will receive 
messages’ parts and combine them into complete messages. 

ACKNOWLEDGMENT 

This work is supported by Switching Technology Research 
Center. The authors would also like to thank AMF team and all 
5G core project members. 

REFERENCES 

[1] J. Postel (ed.), "Internet protocol - DARPA internet program protocol 
specification," RFC 791, USC/Information Sciences Institute, Sep. 1981. 

1 10 100 500

TCP 9 99 991 4955

CoTCP 4968 4955 4952 4952

0
1000
2000
3000
4000
5000
6000

T
P

S

Number of Connections

TPS vs Number of Connections

TCP CoTCP

1 10 100 500

TCP 46623.21236 4682.313018 500.75773 100.889429

CoTCP 100.609681 100.867412 100.931607 100.933519

0
10000
20000
30000
40000
50000

L
at

en
cy

 (
m

s)

Number of Connections

Latency vs Number of Connections

TCP CoTCP



[2] J. Postel (ed.), “Transmission control protocol - DARPA internet program 
protocol specification,” RFC 793, USC/Information Sciences Institute, 
Sep. 1981. 

[3] E. Conrad, S. Misenar, and J. Feldman, “The basics of hacking and 
penetration testing,” 2nd ed., 2012. 

[4] D. Kegel, "The C10K problem," May 8, 1999. 

[5] D. DeJonghe, “Nginx cookbook,” 2nd ed., Oct. 28, 2020. 

[6] R. Graham, ”The secret to 10 million concurrent connections - The kernel 
is the problem, not the solution,” 2013. 

[7] M. Rotaru, “Scaling to 12 million concurrent connections: how 
MigratoryData did it,” Oct. 10, 2013. 

[8] R. Rotaru, “How MigratoryData solved the C10M problem: 10 million 
concurrent connections on a single commodity server,” May 20, 2015. 

[9] “Data plane development kit,” www.dpdk.org. https://www.dpdk.org 
(accessed: Jun. 22, 2022). 

[10] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” Luigi 
Rizzo, Università di Pisa, Italy, pp. 101–112, 2012. 

[11] “Pf ring zero copy,” www.ntop.org. 
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-
copy (accessed: Jun. 22, 2022). 

[12] A. A. A. Donovan, and B. W. Kernighan, “The Go programming 
language,” Oct. 26, 2015. 

[13] E. Matthes, “Python crash course,” 2nd ed., May 2019. 

[14] S. Isakova, D. Jemerov, “Kotlin in action,” Feb. 3, 2017. 

[15] D. E. Knuth, “Fundamental algorithms,” 3rd ed., vol. 1, p. 229, 1997. 

[16] J. Burke, “Multiplexing,” Nemertes Research, Aug. 2021. 

[17] D. Cohen, “Multiplexing protocol,” IEN-90, USC/Information Sciences 
Institute, May 2, 1979.

 


